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EXECUTIVE SUMMARY 

Complex interdependencies between critical infrastructure systems such as transportation 

infrastructures exacerbate the consequences of initial failure events through cascading failure 

effects and the propagation of damages. To address an increasing demand to develop highly 

resilient transportation infrastructure systems, the objective of this research was to create a 

Bayesian network (BN) based probabilistic platform for analysis and design that would enable 

interdependencies among the components and subsystems being considered, resilience 

realization through system design, and resilience restoration by optimized failure 

mitigation/recovery before or after major adverse events. 

This study was motivated by the emerging need to develop high-reliability, low-cost, critical 

interdependent transportation infrastructure systems, in which not only reliable functions for 

each subsystem but also reliable dependencies across subsystems are required to maintain the 

desired functionality of the system when it faces system failures due to major natural disasters or 

gradual aging effects.  

This research explores the gap between quantitative and qualitative assessment of engineering 

resilience in the domain of complex transportation infrastructure systems. A conceptual 

framework was first proposed for modeling engineering resilience, and then a Bayesian network 

was employed as a quantitative tool for the assessment and analysis of engineering resilience. A 

case study involving a transportation system for an aircraft manufacturing supply chain was 

employed to demonstrate the developed research and tools. The developed resilience 

quantification and analysis approach using Bayesian networks could empower system designers 

to have a better grasp of the weaknesses and strengths of their own systems against system 

disruptions induced by adverse failure events. 
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INTRODUCTION 

With the development of complex engineering systems, such as power grids, transportation 

networks, nuclear power plants, spacecraft, healthcare delivery, and multi-level supply chain 

systems, new types of safety issues and unforeseen failure modes may arise. A traditional 

probabilistic risk assessment framework, which works well in the quantification and prevention 

of common system failure scenarios, falls short in evaluating the risks involved in the 

unexpected adverse failure events of complex engineering systems, such as major failures 

induced by natural disasters.  

Currently, most engineering systems are designed with a passive and fixed design capacity in 

terms of the load level that the system is designed to withstand. To maintain the desired level of 

system reliability, a great deal of redundancy is typically designed into most engineering 

systems, which causes a strikingly high life cycle cost (LCC). For instance, the LCC of dual-

redundant functions in an unmanned aerial vehicle (UAV) is about $97 million, whereas triple-

redundant functions cost about $132 million (Malloy 2003). In addition to the high LCC, a high 

level of system redundancy also involves additional material usage and causes greater 

environmental impacts in manufacturing and operation processes.  

The need for new design tools with greater functionality for developing high-reliability, low-

cost, and sustainable engineering systems has reached a critical stage for two reasons: (1) an 

increase in system complexity poses a significant challenge for designers to take into account all 

potential failure modes that could occur during the operational stage of a system and (2) a 

growing trend in developing systems with a long useful life simultaneously challenges system 

designers in the early design stages to project the environmental usage impacts of the system, 

given evolving retrofitting events occurring at the same time. In facing the aforementioned 

challenges in developing complex engineering systems, the concept of resilience provides a new 

way to cope with system complexity and address system failures with a focus on failure 

prevention and recovery efforts.  

Resilience implies the ability of a system to autonomously recover from or adjust easily to 

misfortune or change. Systems in nature have served as an inspiration for countless inventions 

and innovations. The ability of an ecosystem to return to its original state after being disturbed is 

an excellent example of resilience. It is conceivable that engineering design can significantly 

benefit from resilient activities in non-engineering fields in terms of addressing adverse failures 

and creating more resilient and sustainable engineering systems. Research on resilience has been 

widely conducted in recent years in many diverse areas, including ecosystem studies (Webb 

2007, Kerkhoff and Enquist 2007), psychology (Pan and Chan 2007, Bonanno et al. 2005), 

enterprise studies (Wang et al. 2010), engineering (Titus 2006), and other areas, with the 

objective of improving the ability of a system or an individual/organization to withstand and 

recover rapidly from adverse failures. In the mechanical engineering domain, resilience is often 

defined as the ability of a material to return to its original shape following a deformation (e.g., 

being bent, pulled, stretched, or pressed) (Sheffi and Rice 2005, Bhandari 2010). 
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Many approaches have been proposed to model, assess, and improve resilience in various 

engineering areas. In the area of infrastructure systems, Cox et al. (2011) presented a set of 

operational metrics (vulnerability, flexibility, and resource availability) to estimate a 

transportation system’s resilience when facing sudden attacks. Miller-Hooks et al. (2012) 

measured the resilience of freight transportation networks as the expected fraction demand that 

can be satisfied post-disaster. Shafieezadeh and Burden (2014) offered a probabilistic framework 

for a scenario-based resilience assessment of infrastructure systems; the authors defined 

resilience as the ratio of the areas in which the system responds well to hazards to the baseline 

system response during the same period. Omer et al. (2009) defined telecommunication cable 

system network resilience as the ratio of the value delivery of the network after a disruption to 

the value delivery before a disruption.  

In the domain of cyber-physical systems, Cardenas et al. (2009) suggested resilience strategies 

that can be useful for designing control systems: redundancy, diversity, and limited privileges for 

corrupted entities. In container terminal operations, Pant et al. (2014) quantified resilience by 

applying a stochastic measure of resilience that included time to total system restoration, time to 

full system service resilience, and time to α–% resilience. Zobel and Khansa (2014) provided a 

quantitative measure of resilience in the presence of multiple related disaster events. Their 

predicted resilience was calculated based on the percentage of possible loss over a time interval. 

To assess supply chain resilience assessment, Spiegler et al. (2012) used an integral of time 

absolute error (ITAE) framework based on three attributes: readiness, responsiveness, and 

recovery. Youn et al. (2011a) proposed a resilience-driven system design framework for complex 

engineering systems that contains three hierarchical tasks: (1) the resilience allocation problem 

(RAP), (2) system reliability-based design optimization, and (3) system prognostics and health 

management (PHM) design. They showcased their proposed approach in the mechanical system 

design of an aircraft actuator. Li and Xi (2014) employed a quantitative resilience assessment on 

a computer numerical control (CNC) machining system based on engineering recoverability.  

While most of the abovementioned research focused on analyzing engineering resilience from a 

qualitative standpoint, there is a significant gap in assessing engineering resilience through 

quantitative approaches. In addition, the quantitative resilience analysis tools that can be readily 

used by system designers to model and quantify engineering resilience are still underdeveloped. 

Therefore, this study proposes a quantitative resilience framework that defines resilience as a 

function of two essential attributes: reliability and restoration. A Bayesian network (BN) is then 

employed as an assessment tool to model and quantify engineering resilience in the presence of 

uncertainties, such as internal and external disruptions. 

Possessing the unique feature of being able to combine graph theory with statistical theory, a 

Bayesian network offers several advantages in modeling complex systems with random 

variables. First, a Bayesian network displays causality among variables in a compact way 

through a directed acyclic graph (DAG). Given this characteristic, a Bayesian network is 

considered a good candidate to use for elicitation, in the sense of breaking down problems to 

lower-dimension sub-problems (Uusitalo 2007). Second, a Bayesian network allows for the 

combination of different data sources (Heckerman et al. 1995). Input data for Bayesian networks 

can be actual data (experimental, simulation, historical), expert knowledge, or a combination of 

both. Bayesian networks are very helpful in modeling a complex system when it is not feasible 
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or practical to measure vital variables due to system constraints. Third, a Bayesian network is 

able to aid in the decision-making process due to its fast response in computing results (Stewart 

et al. 2014, Heckerman 1997). The advantages of Bayesian networks are not limited to the three 

points previously mentioned. Through its simple but powerful attributes, a Bayesian network can 

be readily adopted in modeling any complex system or real-world application that involves 

uncertainties. This study extends the practice of using a Bayesian network as an assessment tool 

to aid as a modeling foundation to develop more resilient engineering systems. 

  



4 

ENGINEERING RESILIENCE CONCEPTIONS 

As discussed in the previous chapter, there has been considerable research conducted to develop 

the concept of resilience in non-engineering domains; however, the concept of resilience in the 

engineering domain remains a challenge, and there is an essential need to develop a generic 

framework to address resilience for engineering systems. This chapter provides a general 

framework that is widely applicable to engineering systems for the purpose of evaluating 

resilience.  

Non-resilient engineering systems may gradually downgrade toward a low level of performance 

and capacity due to adverse disruptive events. In contrast, engineering systems with a high level 

of resiliency have the capability of robust recovery from an unhealthy state through the 

restoration of system capacity. To model resiliency for general engineered systems, four distinct 

states were defined: 

1. Reliability state (SI): Baseline or original state, where the system operates normally 

2. Vulnerability state (SII): Disrupted state caused by a disruptive event 

3. Restoration state (SIII): State in which the system is restored as a result of a restoring effect 

4. New steady state (SIV): A new steady state after the successful completion of the restoration 

state 

These four states are related by the disruptive event (ei), as depicted in Figure 1.  

 

Figure 1. Interdependent transportation system infrastructure (left) and Bayesian network 

model for resilience modeling (right) 

In the first state, reliability, the system operates under normal conditions until the disruptive 

event occurs at time (td). The second state, vulnerability, is described by the system performance 

function φ (e.g., capacity, inventory), which gradually downgrades from φ(td) to φ(ts) within 
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time (td, ts) due to the occurrence of the disruptive event. The restoration state, which involves 

restoration from the disruption event, launches at time (ts) and ends at time (tr) and is described 

by the restoring system performance function (φ(tr) - φ(ts)). Lastly, the system reaches a new 

steady state at transition time (tr) and is described by the system performance function φ(tr). It 

should be noted that the system performance function at the new steady state φ(tr) is not 

necessarily equal to that at the reliability state φ(td). Depending on the restoration effect, φ(tr) 

could be lower or even higher than the state before the disruption event.  

From Figure 2, it is clear that the magnitude of resilience is highly dependent on when and how 

the system capacity is restored. 

 
From Yodo and Wang 2016, After Hosseini et al. 2014 

Figure 2. Description of four transition states over time with respect to system performance 

function 

In general, the restoration level can be defined as the degree of reliability recovery (Youn et al. 

2011a, 2011b). The conceptual definition of resilience, as shown in Figure 2, can be quantified 

based on the probabilities of passive survival rate (reliability) and proactive survival rate 

(restoration) after the disruptive event, as expressed mathematically in Equation (1). In abstract 

algebra, ⊕ denotes the direct sum and ≜ means “is defined as” or “is equal to by definition.” 

     Resilience Relaibility RestorationR     (1) 

It should be noted that by deriving Equation (1), the engineering resilience can be measured 

quantitatively. Depending on the reliability and restoration strategies, both reliability and 

restoration can be derived as a set of conditional probabilities. Youn et al. (2011a) derived 

restoration as a conditional probability of a system failure event (1 - R), correct diagnosis event 
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(ɅD), correct prognosis event (ɅP), and mitigation/recovery action success effect (κ). Thus, 

resilience can also be written as Equation (2). 

 , , ,P DR R        (2) 
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FRAMEWORK FOR MODELING RESILIENCE BASED ON A BAYESIAN NETWORK 

This chapter introduces a general framework that could be used to facilitate the modeling phase 

of engineering resilience. The framework is structured based on a Bayesian network approach. 

To do this, the BN is first presented in the next subsection, followed by a discussion on utilizing 

the Bayesian network to develop a general framework for engineering resilience. 

Bayesian Network 

A Bayesian network, also known as Bayes network or belief network, is a directed acyclic graph 

that aims to represent the probability properties among variables of interest in an uncertain-

reasoning problem (Heckerman et al. 1995, Stewart et al. 2014). In other words, a Bayesian 

network is able to graphically represent relationships between variables in complex systems in a 

natural and compact way, which makes BN suitable for modeling many real-world applications: 

forecasting (Sun et al. 2006), data mining (Shetty et al. 2007), risk assessment (Weber et al. 

2012), and many other applications that involve complex systems.  

The Bayesian network approach can be understood as follows. A BN can be represented as G = 

(V, E), where a graph (G) is a collection of a set of vertices (variables or nodes) 

 1 2, , ,  nV X X X
and a set of edges (arcs or links) represented by (E). A link from node Xi to 

Xj indicates a causal relation between these two vertices, in which the value of Xj is dependent 

on the value of Xi. Here, Xi is called the parent of Xj, or Xj is the child of Xi. A vertex without 

any parent is called a root vertex, and a vertex without any child is called a leaf vertex.  

In Bayesian networks, the dependency relationships among variables 
 1 2, , ,  nV X X X

 are 

quantified by conditional probability distributions. Let pa(Xi) be a set of all parents of variable 

Xi. The conditional probability distribution attached to variable Xi is represented as P(Xi|pa(Xi)). 

The joint probability distribution of all variables specified in (V) can be constructed from 

conditional probability distributions, as shown mathematically in Equation (3).  

       

   

1 2 1 1 2 2

1 2

1

, ,..., ( ) ( ) ... ( )

, ,..., ( )


 



n n n

n

n i i

i

P X X X P X pa X P X pa X P X pa X

P X X X P X pa X

  (3) 

Bayesian networks require fewer parameters than the conventional method because only 

parameters of interest are taken into consideration. This is a key advantage of the Bayesian 

network approach. An example BN with eight variables is depicted in Figure 3.  
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Hosseini et al. 2014 

Figure 3. Sample Bayesian network with eight variables 

The corresponding decomposition of the joint probability distribution of the variables is given by 

the following:  

1 8 1 2 3

4 1 2 5 2 3 6 4 5

7 1 4 6 8 3 5 6

( , , ) ( ) ( ) ( )

                        ( | , ) ( | , ) ( | , )

                        ( | , , ) ( | , , )

  

  

 

P X X P X P X P X

P X X X P X X X P X X X

P X X X X P X X X X
  (4) 

To calculate the joint distribution of eight variables, unconditional distributions of P(X1), P(X2), 

and P(X3) and the conditional probability of P(X4| X1, X2), P(X5| X2, X3), P(X6| X4, X5), P(X7| 

X1, X4, X6), and P(X8| X3, X5, X6) must be determined. Conditional probability can be obtained 

from conditional probability tables (CPTs). These tables may be directly measured, learned from 

data, determined by expert knowledge, or obtained from a combination of prior or expert 

knowledge and data (Heckerman and Breese 1996). As illustrated in the previous example, 

Bayesian networks are capable of modeling joint probability distributions in a compact and 

economical manner.  

One beneficial property of a Bayesian network is known as belief propagation, which enables 

decision makers to update the probabilities of variables P(Xi) after observing the values of those 

variables. This observed information is then called evidence and is denoted by (e). For instance, 

in Figure 3, some evidence has been observed in variable X5. In this case, the conditional 

probability distribution of variable X5 was given the value of all variables except X5, where 

 5 1 2 3 4 5 6 7 8{ , , , , }, , , X e X X X X X X X X
, and is calculated as follows:  

5

1 2 3 4 5 6 7 8
5

1 2 3 4 5 6 7 8

( , , , , , , , )
( | )

( , , , , , , , )


X

P X X X X X X X X
P X e

P X X X X X X X X

  (5) 
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This conditional probability can be reformulated as follows:  

5

5 2 3 6 4 5 8 3 5 6
5

1 2 3 4 5 6 7 8

( | , ) ( | , ) ( | , , )
( | )

( , , , , , , , )
X

P X X X P X X X P X X X X
P X e

P X X X X X X X X



  (6) 

Resilience Assessment 

This section presents a generic framework for modeling the engineering resilience of complex 

systems based on a Bayesian network. A general schematic of the described framework is 

depicted as a DAG in Figure 4. 

 
After Hosseini et al. 2014 

Figure 4. Conceptual scheme of resilience for engineering systems 

As mentioned in the previous section, there are two important system attributes in assessing 

resilience in complex engineering systems: reliability and restoration. As seen in Figure 4, both 

reliability and restoration serve as prior nodes to the top resilience node.  

A downgraded system only occurs when there are failures observed in the system, so, in other 

words, when reliability fails. There is a need for a downgraded system to be restored to an 

optimal operating condition after the occurrence of a disruptive event. The probability of 

system’s restoration depends on the probability of system reliability in the pre-disturbance state 

and the probability of system characteristics being downgraded due to disruptions. Thus, the 

reliability node and system-specific characteristic nodes serve as prior nodes to the restoration 

node. System-specific characteristic nodes tend to include the difference of specific system 

applications using the proposed framework. Such characteristics include the system’s structures, 

the logic connections of the subsystems, and interactions of the system with the environment. To 

develop a general framework for resilience analysis, the researchers used the term “system-

specific characteristic” to represent the Bayesian network representation of a system, and, 
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further, reliability and restoration of the system depend largely on system-specific 

characteristics. 

In addition to system restoration, system characteristics also determine the reliability level of the 

system. The Bayesian network approach has been employed in reliability analysis for complex 

systems by various researchers (Torres-Toledano and Sucar 1998, Bobbio et al. 2001, Boudali 

and Dugan 2005). The reliability of the system can be obtained using probability propagation 

techniques after the reliability system structure has been transformed into a Bayesian network 

representation using reliability block diagrams (RBDs) or fault trees (FTs) (Torres-Toledano and 

Sucar 1998). RBDs and FTs are graphical methods that show how interactions among 

components or subsystems contribute to system reliability. Similar to RBDs or FTs, system-

specific characteristic nodes consist of many interconnected specific sub-nodes that are essential 

in defining reliability and restoration measures in the system. System-specific characteristic 

nodes tend to include the difference of specific system applications using the proposed 

framework. Such characteristics include the structures of the system, the hierarchy and logic 

connections of the subsystems, and interactions of the system with the environment.  

Without loss of generality, two types of disruptions were considered in this study: internal 

disruptions (human error, component failure, etc.) and external disruptions (earthquake, 

hurricane, etc.). These are considered to be the main root causes of all disruptive events that are 

likely to happen. Upon perception of disruptions (external and/or internal), system characteristics 

such as capacity or inventory may gradually downgrade over time. It is clear that the probability 

of failure of a system’s characteristics can be expressed in terms of the probability of occurrence 

of internal and external disruptions.  

In the Bayesian network structure of this resilience assessment, internal and external disruptions 

are the root nodes, and system resilience is the leaf node. The probability of system resilience is 

expressed as a function of the probability of system reliability and the probability of system 

restoration. By incorporating the Bayesian network approach, the joint probability distribution of 

engineering resilience can be represented by Equation (7). Since the resilience node in the 

Bayesian network is defined as the probability of success in achieving resilience in the complex 

system, this node takes a value between 0 and 1. 

Resilience = P (Disruptions) 

                   P (System Specific Characteristics| Disruptions)

                   P (Reliability | System Specific Characteristics)

                   P (Restoration





  | Reliability, System Specific Characteristics) 

                   P (Resilience | Reliability, Restoration)
  (7)  
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CASE STUDY 

Electric Motor Supply Chain 

In this case study, the resilience of an electric motor supply chain was examined. This case study 

was chosen for the following reasons: (1) a supply chain system is considered a complex system, 

in that a typical supply chain consists of different tiers of suppliers that are interconnected with 

each other, and (2) disruptions to supply chain systems may have adverse impacts on financial 

conditions and the operations of suppliers, manufacturers, and stakeholders.  

In 2011, a massive earthquake with an 8.9 magnitude struck the northeast coast of Japan, 

followed by a tsunami and nuclear accidents. This devastating disaster resulted in the most costly 

natural disaster in Japan’s modern history (Park et al. 2013). A number of manufacturing 

facilities specializing in specialty paint, semiconductors, and other automobile parts, which are 

essential to the global motor vehicle supply chain, were adversely affected by this disaster and 

temporarily shut down (Canis 2011, Nanto et al. 2011). Worldwide automakers, including Ford, 

Chrysler, Volkswagen, BMW, Toyota, Honda, and GM, suffered from a parts shortage, which 

resulted in lower production output and excessive loss. For several weeks after the disaster, 

according to Canis (2011), a shortage of over 150 parts left Toyota’s North American operations 

operating at 30% capacity. The total loss from this natural disaster was estimated to be around 

$300 billion (Canis 2011, Nanto et al. 2011). This indicates that disruptions to supply chains can 

cause a huge negative impact on the performance of manufacturers, suppliers, and market 

conditions. Therefore, it is incumbent to investigate the role of resilience in supply chain 

systems. 

Case Study Description 

The electric motor supply chain case study being investigated is a three-tier supply chain that 

involves the following: suppliers, manufacturers, and distribution centers. An electric motor is 

composed of two assembly parts: a drive assembly and a case assembly. The drive assembly is 

made by assembling a rotor and stator together, while the case assembly is made by assembling a 

shield and base together. The main parts of a motor and its assembly structure are shown in 

Figures 5 and 6, respectively.  

 
Hosseini et al. 2014 

Figure 5. Main parts of electric motor 
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After Hosseini et al. 2014 

Figure 6. Assembly structure of electric motor 

Components of the supply chain, along with their locations, are illustrated in Figure 7.  

 
Hosseini et al. 2014 

Figure 7. Supply chain network of electric motor 
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This supply chain has eight suppliers, where suppliers (1, 2), (3, 4), (5, 6), and (7, 8) are 

committed to supplying the rotor, stator, shield, and base, respectively, to the sub-assembly 

manufacturers. There are four sub-assemblers: sub-assemblers (9, 10) are dedicated to making 

the drive assembly by assembling the rotor and stator, and sub-assemblers (11, 12) are 

committed to making the case assembly by assembling the shield and base. The drive and case 

assemblies are further assembled to make the electric motor at two final assembly locations 

(13&14). The electric motors are then distributed to four distribution centers (15, 16, 17, and 18).  

The Bayesian network for assessing the resilience of the electric motor’s supply chain is 

structured through historical data and knowledge from subject matter experts. The proposed 

structured Bayesian network is shown in Figure 8.  

 

Figure 8. Bayesian network for electric motor supply chain 

The causal relationships between the components in the electric motor supply chain were 

obtained using the belief propagation of suppliers and manufacturing experts. A list of 

components involved in modeling the resilience of the supply chain is tabulated in Table 1.  
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Table 1. List of variables used in modeling supply chain resilience 

Node Variable 

Resilience Attributes 

X1 Supply chain’s resilience 

X2 Supply chain’s reliability 

X3 Supply chain’s restoration 

External Disruptive Events 

X4 Flood 

X5 Hurricane 

X6 Tornado 

X7 Fluctuation of rotor price 

X8 Fluctuation of stator price 

X9 Fluctuation of shield price 

X10 Fluctuation of base price 

Internal Disruptive Events 

X11 Transportation failures 

X12 Machine breakdowns 

System-Specific Characteristics 

X13 Capacity of rotor’s supplier (Kansas City) 

X14 Capacity of rotor’s supplier (Tupelo) 

X15 Capacity of stator’s supplier (Tupelo) 

X16 Capacity of stator’s supplier (Aberdeen) 

X17 Capacity of shield’s supplier (Casper) 

X18 Capacity of shield’s supplier (Minneapolis) 

X19 Capacity of base’s supplier (Ashland) 

X20 Capacity of base’s supplier (St. Louis) 

X21 Lead time of rotor’s supplier (Kansas City) 

X22 Lead time of rotor’s supplier (Tupelo) 

X23 Lead time of stator’s supplier (Tupelo) 

X24 Lead time of stator’s supplier (Aberdeen) 

X25 Lead time of shield’s supplier (Casper) 

X26 Lead time of shield’s supplier (Minneapolis) 

X27 Lead time of base’s supplier (Ashland) 

X28 Lead time of base’s supplier (St. Louis) 

X29 Lead time of drive assembler (Kansas City) 

X30 Lead time of drive assembler (Tupelo) 

X31 Lead time of case assembler (St. Louis) 

X32 Lead time of case assembler (Medford) 

X33 Lead time of motor manufacturer (Wichita) 

X34 Lead time of motor manufacturer (Knoxville) 

X35 Inventory of drive assembler (Kansas City) 

X36 Inventory of drive assembler (Tupelo) 

X37 Inventory of case assembler (St. Louis) 

X38 Inventory of case assembler (Medford) 

X39 Performance of motor manufacturer (Wichita) 

X40 Performance of motor manufacturer (Knoxville) 
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Node Variable 

X41 Safety stock of manufacturer (Wichita) 

X42 Safety stock of manufacturer (Knoxville) 

X43 Service level of distribution center (New York) 

X44 Service level of distribution center (Dallas) 

X45 Service level of distribution center (San Diego) 

X46 Service level of distribution center (Seattle) 

X47 Stand-by supplier for rotor 

X48 Stand-by supplier for shield 

X49 Alternative transportation 

X50 Suppliers’ quality ratings 

 

Through investigation of historical data and several questionnaires completed by suppliers, 

manufacturers, and distribution managers, it was found that the three types of natural disasters 

that are most likely to affect the electric motor supply chain are flood, hurricane, and tornado. 

These natural disasters can adversely impact the capacity of the rotor supplier in Kansas City 

(X13), the capacity of the shield supplier in Minneapolis (X18), and the lead time of the final 

assembler in Wichita (X33). It was also found that price fluctuations for the rotor, stator, shield, 

and base in markets (X7–X10) can have a negative influence on the capacities of their 

corresponding suppliers. Insufficient supplier capacities will result in extended supplier lead time 

(X21–X28). The lead times of the drive and case sub-assemblers (X29–X32) are directly 

dependent on the lead times of their corresponding suppliers; similarly, the lead times of the final 

assemblers (X33, X34) are related to the lead times of the drive and case assemblers, so these 

causalities are important considerations when modeling a supply chain’s resilience. The 

performance of motor manufacturers (X39, X40) can be expressed as a function of their lead 

times and safety stocks. Therefore, the lead times and safety stocks of manufacturers are 

displayed as children of a manufacturer’s performance. Performance of the final assembler also 

serves as an index to assess the service level of distribution centers (X43–X46). In the Bayesian 

network resilience model, service levels in different locations are considered the parents of the 

final assembler performance variables.  

The overall electric motor supply chain’s reliability (X2) is defined as a function of the 

distribution centers’ service levels (X43–X46) and the suppliers’ quality ratings (X50). 

Therefore, the probability of failure in system reliability is dependent on the probability of the 

failure of its attachments. The suppliers’ quality ratings provide a dimension of input for the 

ratings of the quality of different suppliers, which could be quantified, for example, from the 

rejection rate of incoming parts from lower-tier suppliers. To define causality in the restoration 

node (X3), variables that may have a direct impact on restoration actions should be identified. 

The first variable is redundancy (i.e., having stand-by suppliers for critical parts such as rotors 

and shields (X47, X48) or alternative transportation resources (X49)). These strategies could 

improve the system’s restoration by substituting failed-to-perform suppliers with stand-by 

suppliers. The second variable is the performance of the motor manufacturer (X39, X40). 

Systems with excellent performance are more likely to be restored rapidly with minimal effort. 

The reliability of the supply chain system (X2) is the third variable in the restoration node 

because systems with a higher degree of reliability are less prone to disturbances. Finally, the 
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resilience variable (X1) is defined as a function of the reliability (X2) and restoration (X3) 

variables, as pre-defined (see Equation (1)). In this case study, the resilience node is the leaf 

node.  

Bayesian Network for Resilience Analysis 

A schematic of the Bayesian network structure for the proposed models is presented in Figure 8. 

All variables in the electric motor supply chain case study are modeled in two states: failure state 

or success state. For example, a success state for the lead time of the motor manufacturer in 

Wichita (X33) means that the manufacturers are able to supply the product on time (no delay) to 

the designated distribution centers, while a failure state is used when the manufacturer fails to 

supply the product on time to the distribution centers. After constructing the graphical network, 

the next step is to determine all the conditional and unconditional (prior) probabilities. The 

probabilities in this model reflect the decision maker’s belief regarding the likelihood of the 

occurrence of events. The links between each of the nodes represent the dependencies among the 

variables.  

Since all variables are discrete, the conditional probability distributions are represented in a CPT. 

For example, Figure 9 shows the relationship between flood (X4), rotor price fluctuation (X7), 

and the supplier’s capacity in Kansas City (X13). The conditional probability of node X13 is 

dependent on the prior probabilities of X4 and X7. Subject matter experts need to determine the 

first four of the eight possible combinations of events that are likely to happen, and the following 

four combinations are complementary to the first four.  

 

Figure 9. Relationship between nodes X4, X7, and X13 

In Table 2, nodes with state F (False) are in a success state, while nodes with state T (True) have 

failed to succeed. For example, the third row represents the conditional probability of failure for 

node X13, given the failure of node X4 and the success of node X7. The other CPTs are not 

discussed in this report. Note that the conditional probabilities of all states are calculated using a 

mix of beliefs, expert knowledge, and historical data.  
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Table 2. Conditional probability table (X13 | X4, X7) 

Row X4 X7 X13 Probability 

1 F F F 0.95 

2 F T F 0.8 

3 T F T 0.4 

4 T T T 0.65 

5 F F T 0.05 

6 F T T 0.2 

7 T F F 0.6 

8 T T F 0.35 

* T = True, failure state, F= False, success state 

In this case study, the managerial committee suspected that the final assemblers played an 

important role in the overall supply chain’s resilience. Therefore, several scenarios that involved 

the performance and lead time of the final assemblers in Wichita and Knoxville were examined. 

There were 16 possible scenarios that could impact the resilience of the electric motor supply 

chain, and the results are shown in Table 3. X33 and X34 are the lead time of final assemblers in 

Wichita and Knoxville, respectively. Similarly, X39 and X40 correspond to the performance of 

the final assemblers in Wichita and Knoxville.  

Table 3. Scenarios involving final assemblers in quantifying overall supply chain resilience 

Scenario X33 X34 X39 X40 Restoration Reliability Resilience 

Failure 

Events 

1. F F F F 0.89 0.84 0.86 None 

2. T F F F 0.83 0.48 0.65 

One 
3. F T F F 0.89 0.84 0.86 

4. F F T F 0.71 0.60 0.66 

5. F F F T 0.70 0.49 0.60 

6. T T F F 0.83 0.65 0.48 

Two 

7. F F T T 0.51 0.36 0.44 

8. T F T F 0.67 0.39 0.53 

9. F T F T 0.70 0.49 0.60 

10. T F F T 0.68 0.30 0.49 

11. F T T F 0.71 0.66 0.60 

12. T T T F 0.67 0.39 0.53 

Three 
13. T T F T 0.68 0.30 0.49 

14. T F T T 0.49 0.26 0.38 

15. F T T T 0.51 0.36 0.44 

16. T T T T 0.49 0.26 0.38 Four 

 * T = True, failure state, F= False, success state 

Scenario 1 is the original state of the electric supply motor chain, where there are no failures 

observed for any lead time or performance measures of the final assemblers. The original state 

indicates that the electric motor supply chain is 86% resilient. In other words, when the supply 
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chain is functioning normally, without any disruptive events, it has an 86% success rate in 

achieving resilience. Scenario 2 through Scenario 5 show one disruptive event in the supply 

chain. Comparing these four scenarios, it can be seen that when one disruptive event happens at 

either node X33 (Scenario 2) or X40 (Scenario 4), the supply chain’s resilience is greatly 

affected in terms of low supply chain reliability.  

One may suspect that if X33 and X40 happen to fail at the same time (Scenario 10), this 

combination would result in the worst resilience value. However, this is not always the case. 

Comparing Scenario 6 through Scenario 11, where there are two failure events observed at the 

same time, Figure 10 shows that Scenario 7 has the lowest resilience (44%) instead of Scenario 

11. This is because the interactions between the nodes in quantifying resilience in Scenario 7 are 

stronger compared to the interactions between the nodes in Scenario 10. In Scenario 7, the 

observed failure events are the performance of the final assemblers in Wichita (X39) and 

Knoxville (X40).  
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Figure 10. Comparison between Scenario 7 (top) and Scenario 10 (bottom) in resilience 

quantification 

Likewise, Figure 11 indicates that Scenario 14 and Scenario 16 have the same resilience value of 

38%, although there are three failure events observed in Scenario 14 and four failure events in 

Scenario 16. It can be concluded that X34 (lead time in Knoxville) does not have a great 
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influence in the overall supply chain’s resilience quantification. It should be noted that in this 

example, the results shown are the resilience values at different time instants, whereas resilience 

is time dependent and evolves over time. 

 

 

Figure 11. Comparison between Scenario 14 (top) and Scenario 16 (bottom) in resilience 

quantification 
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Compared to other models, a Bayesian network offers decision makers fuller insights into 

different scenarios that are likely to occur and provides these insights in a compact way. The 

ability of Bayesian networks to capture the strength of the causality between nodes can give 

decision makers a better understanding of the effects of the interactions among failure events in 

quantifying resilience. The dependencies among nodes may be critical in determining a system’s 

resilience and should not be neglected. In terms of improving resilience, decision makers will be 

able to develop a better approach for budgeting when the dependencies among nodes are 

considered.  

Discussion 

In recent years, resilience concepts that describe the ability of a system to withstand failures and 

recover rapidly from adverse events have started to gain recognition in the field of engineering. 

In order for resilience concepts to be more applicable and useful to various engineering domains, 

one has to be able to measure resilience. However, readily used resilience quantification tools are 

still not well-developed. Therefore, this study proposes a Bayesian network as an assessment tool 

to model and quantify resilience.  

The Bayesian network approach offers a simple and compact way of representing a complex 

system’s resilience from different data domains. Using simple arcs and nodes, a BN graphically 

displays natural causal relationships among variables that are involved in molding a system’s 

resilience. Statistically, the strength of the dependencies among variables can be measured by 

their conditional probabilities. A simple BN graph displays compact information in its nodes and 

arcs. As discussed in the previous section, three nodes and two arcs are able to represent the 

likelihood of eight different scenarios.  

In addition to being simple yet compact, constructing a resilience model using a Bayesian 

network does not depend on the number of available data points. A BN takes into account all 

data and does not require minimum sample sizes when performing an analysis (Uusitalo 2007). 

The case study used in this research shows a resilience model of an electric motor supply chain 

constructed with 50 variables. It was able to demonstrate the effectiveness of the Bayesian 

network approach in modeling system resilience.  

When modeling resilience, many interconnected variables influence the measure of resilience in 

a complex system. The input data for each component may not always be possible to obtain from 

only one data source. Therefore, allowing a combination of various data sources is a significant 

benefit of a Bayesian network in quantifying resilience in cases where some data may be 

missing, incomplete, or not able to be measured in real-time. Additionally, the variables and 

probabilities for restoration measures can be obtained from input by manufacturing experts.  

Once the resilience model is constructed, the Bayesian network provides a fast response in 

evaluating the different possible scenarios. This unique attribute makes a BN a good tool to aid 

in decision-making, where quick responses are critical. Equipped with the advantage of being 

able to represent resilience statistically in a compact causal graph, a Bayesian network allows a 

transparent approach for decision makers to study and evaluate different resilience scenarios. 
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This is especially true on the occasions when dependencies between variables are critical, as 

demonstrated in the case study of the electric motor supply chain, where the dependencies 

among variables could be easily overlooked. Through the Bayesian network approach, a 

resilience concept can be realized and used to build low-cost, high-reliability, and sustainable 

complex systems.  

Although a Bayesian network offers many benefits, there are some shortcomings. One of those is 

that a BN does not offer a feedback loop. Thus, updating a large Bayesian network may require a 

substantial amount of effort. To accommodate changes to the design of a system, a dynamic 

configuration for a BN must be considered. Considering the fact that resilience evolves over 

time, a dynamic Bayesian network (DBN) could be implemented to overcome the shortcomings 

of a BN. Although a Bayesian network is generally independent of the data mining process, it is 

considered a data-intensive and computationally expensive approach. Identifying important 

components that could be used to simplify the data required to build a Bayesian network is 

critical. Sensitivity analysis could be used in prioritizing critical components in the complex 

system. In addition, efficient computational algorithms could be sought to improve the efficiency 

of the proposed resilience modeling framework. Moreover, it is also important to note that the 

resilience level of a system is also determined by the resilience level of its components. Hence, 

optimizing the resilience level of the components is critical in defining the overall system’s 

resilience. Future work in this area will be directed toward quantifying and optimizing resilience 

at the component level with the hope of being able to develop a more effective and readily used 

modeling tool that is not only dedicated to modeling but is also able to quantify engineering 

resilience in complex systems. 

In this study, a Bayesian network has been proposed as an approach to modeling and quantifying 

resilience in complex engineering systems. The proposed framework can be used to facilitate the 

design of resilient engineering systems. As resilience is quantified with two essential attributes 

(reliability and restoration), improved designs of a system could be sought to improve the 

reliability of the system’s components and subsystems as well as to employ more cost-effective 

restoration strategies. Although improving resilience for complex engineering systems is beyond 

the scope of this study, there are several resilience strategies that have been proposed by 

researchers in diverse engineering fields. Miller-Hooks et al. (2012) proposed maximizing the 

resilience of freight transportation networks through optimal allocation of a limited budget by 

focusing on preparedness and recovery activities. Omer (2013) suggested several resilience-

enabling schemes to improve resilience by reducing vulnerability and increasing adaptive 

capacity. 
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PROJECT RESULTS AND ACCOMPLISHMENTS 

Results and Conclusions 

A general framework for the resilience of engineering systems was developed based on a 

Bayesian network. The framework was structured based on the relationship between system 

resilience, reliability, and restoration. To measure resilience in complex systems quantitatively 

under disruptive events, a Bayesian network was adopted. Employing a Bayesian network 

approach offers a high potential for successfully presenting ambiguous knowledge and 

performing reasoning under uncertainty. Another advantage of a BN is its causal representation 

of system characteristics. Bayesian networks relate system variables to each other by causal 

representation in a graph, thereby giving more transparent reasoning. A BN is constructed using 

a mix of sources, including historical data and expert knowledge.  

The proposed approach was implemented through an assessment of resilience in an electric 

motor supply chain system. Different possible scenarios under different disruptive events were 

investigated to find the root cause of low resilience values. The Bayesian network aided in 

providing decision makers with visual and analytical insights into the variables that contribute to 

overall system resilience. Thus, improvement actions could be planned and executed 

correspondingly with the aim of building a more resilient complex engineering system. 

Opportunity for Training and Development 

The researchers have been incorporating the research findings into graduate courses at Wichita 

State University and other training events as follows:  

 The principal investigator (PI) has incorporated the concepts of risk and resilience into the 

course IME-864: Risk Analysis, through projects dedicated to transportation system risk and 

resilience modeling and analysis.  

 The PI has provided training seminars to a broader range of students and professionals 

through the IME colloquium, attended by graduate students from the College of Engineering 

at Wichita State University, local industrial professionals through the Wichita chapter of the 

Institute of Industrial and Systems Engineers (IISE), and local industrial advisory board 

members.  

 The PI has also shared the results of this research at invited seminars at Argonne National 

Laboratory and Kansas State University.  

Dissemination of Results 

The researchers have actively disseminated the research results through presenting papers to 

relevant technical conferences, such as the International Design Engineering Technical 

Conferences & Computers and Information in Engineering Conference (IDETC/CIE). 
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Meanwhile, the researchers have made efforts to disseminate research results through 

collaborations with industry and national laboratories. Specifically, the researchers have been 

working with a leading electronics testing company (Integra Technologies, LLC) and national 

laboratory (NASA Ames Research Center) to develop research collaborations and disseminate 

research results.  

The researchers have also established an industrial collaboration with Medtronic to disseminate 

research results through seminars while also obtaining internship opportunities for graduate 

students.  

Products 

Following are other papers based on the results of this study: 

 Hosseini, S., N. Yodo, and P. Wang. 2014. Resilience Modeling and Quantification for 

Design of Complex Engineered Systems Using Bayesian Networks. Proceedings of the 

ASME 2014 International Design Engineering Technical Conferences & Computers and 

Information in Engineering Conference (IDETC/CIE), Buffalo, NY, August 17–20. 

 Yodo, N. and P. Wang. 2015. Resilience Analysis and Allocation for Complex Systems 

Using Bayesian Network. Proceedings of the ASME 2015 International Design Engineering 

Technical Conferences & Computers and Information in Engineering Conference 

(IDETC/CIE), Boston, MA, August 2–5. 

 Yodo, N. and P. Wang. 2016. Resilience Modeling and Quantification for Engineered 

Systems Using Bayesian Networks. Journal of Mechanical Design, Vol. 138, No. 3. 

 Yodo, N. and P. Wang. 2016. Resilience Analysis for Complex Supply Chain Systems Using 

Bayesian Networks. 54th AIAA Aerospace Sciences Meeting, AIAA Science and 

Technology (SciTech) Forum and Exposition, San Diego, CA, January 4–8.  

 Yodo, N. and P. Wang. 2016. Resilience Allocation for Early State Design of Complex 

Engineered Systems. Journal of Mechanical Design, Vol. 138, No. 9. 

 Yodo, N. and P. Wang. 2016. Engineering Resilience Quantification and System Design 

Implications: A Literature Survey. Journal of Mechanical Design, Vol. 138, No. 11. 

 Yodo, N., P. Wang, and Z. Zhou. 2016. Predictive Resilience Analysis of Complex Systems 

Using Dynamic Bayesian Networks. IEEE Transactions on Reliability, Vol. 66, No. 3, pp. 

761–770.  

 Yodo, N., P. Wang, and M. Rafi. 2018. Enabling Resilience of Complex Engineered Systems 

Using Control Theory. IEEE Transactions on Reliability, Vol. 67, No. 1, pp. 53–65. 

Study Impacts 

This research pioneers a novel risk and resilience modeling and quantification framework that 

will lead to the realization of failure resilience for interdependent transportation systems. The 

proposed risk and resilience quantification and analysis research will provide a better 

understanding of system failures and the cascading effects of interdependent transportation 

systems for system designers and decision makers. Employing a novel Bayesian network 
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approach will provide a new tool for system designers and decision makers to better design 

transportation systems and make optimal operational decisions against system disruptions 

induced by adverse failure events and further mitigate the risks of catastrophic failures. Further, 

incorporating risk and failure resilience into engineering design for resilient interdependent 

transportation systems will likely stimulate growth in several related infrastructure systems that 

are dependent on transportation systems, such as electrical power generation, healthcare, food 

supply chains, and more, which may suffer from possible catastrophic system failures and high 

maintenance costs. 
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